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Wave propagation across the continental shelf 
By JOHN W. MILES 

Institute of Geophysics and Plmetary Physics, University of California, La Jolla 

(Received 17 December 1971) 

Wave propagation across the continental shelf is studied by analogy with trans- 
mission-line theory. Fourier transformation along the contours of constant depth, 
which are assumed parallel to a straight coastline, yields a Sturm-Liouville 
equation for a prescribed depth profile h(x). The modal spectrum of the profile, 
which comprises a finite, discrete spectrum of trapped modes and a continuous 
spectrum of radiated modes, is established. The Green’s function for a point 
source on the coastline is constructed by Fourier superposition over this spectrum. 
Detailed results are calculated for a two-step model (level shelf separated from 
level abyss by vertical cliff) and for a gradually sloping shelf that merges smoothly 
into a level abyss. The radiation impedance of a harbour is calculated, and the 
effects of the continental shelf on the resonant response of the harbour to a 
tsunami are discussed. 

1. Introduction 
The following treatment of long waves on a continental shelf is directed pri- 

marily towards the calculation of the Green’s function for a point source on the 
coastal boundary with specific application to the resonant response of a harbour 
to tsunami excitation. It is possible, however, that the preliminary results de- 
veloped in 993 and 4 may be of somewhat wider interest. 

By long waves, we imply disturbances that are sufficiently long to justify 
shallow-water theory, but not so long as to render Coriolis effects significant. 
Starting from the hypotheses implicit in this definition and neglecting viscosity, 
we develop in $ 2  the equations governing wave propagation in a half-space x > 0 
with depth contours h = h(x) parallel to the boundary x = 0. In  9 3, after Fourier 
transformation with respect to y (the co-ordinate measured along contours of 
constant depth), we consider one-dimensional propagation over the profile 
h = h(x) and develop an analogy with propagation along a transmission line with 
spatially varying properties. The (complex amplitudes of the) free-surface dis- 
placement and a normalized measure of the mass transport at  a given point, say 
xm, form a two-element column matrix, say cp,, such that cpn = TZtp,, where 
is a 2 x 2 transfer matrix for the interval (xm, zn). The requirement that cp(x) 
be continuous across discontinuities in h(x) implies that the transfer matrices for 
a set of sub-intervals may be cascaded over any interval in which h(z) is piecewise 
continuous. 

In  94, we consider the free modes of a given profile with the boundary conditions 
of no mass transport across x = 0 and either a radiation or a finiteness condition 
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at x = 00. The total spectrum of these free modes comprises a discrete spectrum 
of trapped modes and a continuous spectrum of radiated (or standing-wave) 
modes. The discrete spectrum is finite for a shelf of finite length and contains at  
least one mode except in the limiting case of constant depth. 

In $5, we construct the Green’s function, say G, for a point source on the 
boundary x = 0 by Fourier superposition over the complete spectrum of modes 
for a given profile. We then establish a local approximation to G that differs from 
the corresponding Green’s function of potential theory by a complex constant, 
the value of which determines the radiation impedance of a finite source dis- 
tribution over a coastal interval (such as a harbour mouth) that is small com- 
pared with the wavelength. 

In 3 6, we consider a two-step model, which comprises a shelf of constant depth 
that drops discontinuously into an abyss of constant depth. In  $7,  we develop 
the WKB approximation for a shelf of gradually varying depth that merges 
smoothly into an abyss of constant depth at a finite distance from the coast and 
apply the results to a parabolic shelf (the solution for a parabolic shelf may be 
expressed in terms of Bessel functions without invoking the WKB approximation, 
but the results are rather cumbersome). 

In  $8, we apply the development of $$ 5-8 to the calculation of the radiation 
impedance for a harbour mouth and consider the effects of variable depth, vis-ci- 
wis those for an ocean of constant depth (Miles 1971), on Helmholtz resonance 
under tsunami excitation. The principal differences are an increase of each of the 
resonant frequency, the inverse damping factor &, and power-spectrum amplifi- 
cation factor 8. The reader who is interested primarily in the qualitative effects 
of a continental shelf on harbour resonance could turn directly to 8 8. 

2. Formulation 
Let x and y be Cartesian co-ordinates in the free surface, with x measured 

seaward from the coastline (x = 0), t the time, cr the angular frequency, h(x) 
the local depth, the free-surface displacement, fi the horizontal particle velocity, 
and 5 and u the corresponding complex amplitudes, such Chat 

{!%, Y, t ) ,  G ( X ,  Y, t,} = %[{&, Y), u(x, Y)> e T ,  (2.1) 

where 92 implies the real part of. The linearized, shallow-water equations for 5 
and u are (Lamb 1932, 6 193) 

icru = -gvg (2.2a) 

and h-l(hcz)z + c,, + k25 = 0,  (2 .2b )  

where k = k(x) = u{gh(x))-i (2.3) 
is the local wavenumber. 

Separating variables according to 

we obtain 

where a2 = a2(x, p)  = k2(x) - p 2 ,  
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and the prime implies differentiation with respect to x .  We also define 

+(x)  = h(x)  9'(x)  (2.7) 

(2.8) 

hX' = X 2 + K 2 ,  (2.9) 
where K = K ( X )  = a(X,p)h(X)  = {((T2/g)-/32h(X)}*. (2.10) 

as a measure of the mass transport normal to the coastline and 

x ( x )  = - $(.)/4(4 = - h(x)  9'(x) /$(x)  
as the corresponding impedance function; x satisfies the Riccati equation 

We assume that h(x) is piecewise continuous, by virtue of which each of #,$, and 
x is a continuous function of x .  

As posed, (2.4) represents a disturbance travelling in the positive-y direction 
(south on the Pacific coast for right-handed co-ordinates) if /3 is positive and real; 
changing the sign of /3 yields a wave travelling in the negative-y direction. A 
general solution can be constructed by Fourier-integral superposition, in which 
case p may be regarded as complex (see $ 5 ) .  

3. Impedance transformation 
Describing the wave state at x = xm by the two-element column matrix 

{$(xrn), +(xm)}  E {$m, $ml, (3.1) 

we may express the solution in (0,Z) as a linear combination of q5"(x) and $Os(x), the 
cosine-line and sine-like solutions of (2.5) that satisfy the initial conditions 

@ = l ,  ? / $ = O ,  $ ? = O ,  y+1. (3.2a, b, c, d )  

We may then connect the wave states a t  x = 0 and x = 1 by the linear transforma- 
tion 

{9P 11.1) = TK90, +oh ( 3 . 3 ~ )  

where (3.3b) 

is the transfer matrix for (O,Z), and the subscript 1 implies x = 1. Invoking the 
Wronskian relation between q5OC(x) and $OS(x), we obtain 

IT!] = $p$p-$y$p = 1.  (3.4) 
Invoking the requirement that Ti be the inverse of T,O, together with (3.4), we 
obtain the reciprocity relations 

p; = @, $f = -$I"", 7j$ = -$?. (3.5a, b,c)  

Calculating $l/q5, from (3.3) and invoking (2.8) and (3.5), we obtain the im- 
pedance transformations 

5 
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It follows from (2.5) and (3.2) that each of the elements of Ti is real for real values 
of p2 and is an entire function of (by virtue of the fact that a2 is an entire func- 
tion of p);  accordingly, the only singularities of xl(p) are either the branch points, 
if any, of xo(/3) or poles. 

It may be expedient, in considering a given depth profile, to consider sub- 
intervals within which h(x) may be approximated by a form that permits either 
an analytical or a numerical solution of (2.5). Invoking the requirement that $ and 
@ be continuous across finite discontinuities of h, we may then cascade the trans- 
fer matrices according to 

(3.7) 

over any interval (x,, xn) in which h(x) is piecewise continuous (cf. Munk, Snod- 
grass & Gilbert 1964). Similarly, the transformations (3.6a, b )  may be cascaded 
to obtain a bilinear transformation between xo and xn, although it may be simpler 
to proceed through (3.7). 

TL = TTL-1Tn-2 n n+..T! 

4. Free modes 
Free modes are those solutions of (2.5) that satisfy 

$ ( O )  = 0 and ($(x)( < 00 (x t00) .  (4.la, b )  

We consider these solutions on the assumption that h, < h(x) < h, in ( O , I ) ,  
the &el$?, and h(x) = h, in z > I ,  the abyss. The boundary condition (4.la) 
implies that $(x) must be proportional to $OC(x) in (0, I ) ,  where q5OC(x) is determined 
by(2.5)and(3.2a,b). The finiteness condition(4.lb), togetherwiththeassumption 
of constant depth, implies that $(x) must be either exponentially decaying or 
trigonometric in ( I ,  00). 

The exponentially decaying solutions are known as trapped modes and have a 
finilje, discrete spectrum, say 

ki > p: > > ...pi > k$, (4.2) 

where, by assumption, k, < b(x) < k, in (0,Z). Designating these modes by 
q5(x,Pm) and choosing the normalization $(0,pm) = 1, we obtain 

(4.34 
(4.3b) 

where p = (p2-k:)+ = “a,, (4.4) 

XY @?/@ = ph, X ,  (p = f /Im). (4.5) 

and the pm are determined by the impedance-matching condition 

We designate xy as the modal impedance of the shelf. 
By invoking standard arguments from Sturmian theory (Ince 1944, 0 10.32), 

we find that (4.5) has a t  least one root in (km, k,) and that a necessary condition 
for the existence of more than one root (n > 1) is 

(kg-kz)* 3 a, > n/Z; (4-6) 
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conversely, a* < n/l implies n = I. The ratio $/xm is small (of the order of h,/h,, 
where h, is the mean shelf depth) except in the neighbourhood of /3 = kpm. 
It follows that /3,, the dominant eigenvalue, is close to km, whilst the remaining 
eigenvalues are close to the poles, if any, of ~?( /3 ) ;  the latter modes resemble 
those of an open organ pipe. These facts are illustrated in figure 2 for the two- 
step model of $6. The mass transport for the mth mode, +(%, pm), has m- 1 
nodes in (0,Z). 

The remaining free modes have a continuous spectrum in 0 < p2 < kz and are 
given by 

90C(4 (0 < X < l ) ,  ( 4 . 7 ~ )  

= { sec E cos (am(x - 1)  + €1 ( x  2 I), (4.7b) 

where the phase parameter B is determined by the impedance-matching condition 

xp = K, tan E. (4.8) 
We may regard the right-hand side of (4.7 b )  as the superposition of an incident 

wave and its reflexion at the virtual boundary x = Z- (€/a,). The corresponding 
reflexion coefficient is 

(4.9) 

whilst the amplification factor of the shelf (referred to the peak value of the 
disturbance in x > 1 )  is 

A ( p )  = COS€/@ = K,{ (K ,# )2 f  (II.,")'))-&. (4.10) 

[It may be expedient to solve (4.5) and (4.8) by regarding them as initial con- 
ditions for the numerical integration of the Riccati equation (2.9) and then 
determining the zeros of x(0,  p). This procedure may be expedited by the Pruffer 
transformation x = tan y.] 

R = exp ( - 2is), 

5. Green's function for the half-space 

sionless, line-source solution of (2.2) which satisfies 
We define the Green's function G(x, y) for the half-space x > 0 as that dimen- 

iGx = S(y) ( X  = 0 )  (5.1) 

together with finiteness and radiation conditions as x and/or [y] t 00. Multiplying 
G by lv/gh, yields a source with a peak volume flux of I into x > 0. The known 
result for constant depth is 

G = +Hh2)(kR), R = (x2+y2)* (h  = constant). (5.2a, b )  
Posing the Fourier-transform pair 

g(x , /3)  =Sm G(x,y)e*Bgdy, 2nG(x,y)  =la 3(x,,8)e-iBYd,8 (5.3a,b) 
-03 --m 

and transforming (2.2) and (5.1), we find that g ( x , P )  must satisfy (2.5) and 
MX = 1 (. = 0). (5.4) 

The radiation and finiteness conditions imply that 3 must be proportional to 
exp ( -px) in x > 'I, where p is given by (4.4) and is either positive-real for ,@ > k: 

5-2 
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or positive-imaginary (thereby satisfying the radiation condition as x f 00) for 
0 < pa < k:. Matching this solution to a linear combination of q5OC(x) and q5OS(x) 
in (0, I ) ,  we obtain 

5750S(4 - (1/xo) q50C(x) (0 G x G I ) ,  ( 5 .5a )  

{@ - (q5p/xo)} e-PQ-l) (x 2 1 ) )  (5 .5b )  
( 5 . 6 a )  

Who) Y(x,P)  = { 
where xo = (11.1”” + X m  q5W(%V + X m  $3 
is the inverse of (3.6 b)  and 

X, = ph, = i~, .  (5.6b) 

Invoking the fact (see $ 3) that q5OC(x, p) and q5OS(x, p) are entire functions of p, 
we find that the only finite singularities of $(x, p)  in the complex-/3 plane are the 
branch points of xm at = t- k, and the poles of l/xo at p = & p,, corresponding 
to the trapped modes defined by (4 .3 )  and ( 4 . 5 ) .  Invoking the asymptotic re- 
presentations 

q 5 O C  N (h,/h)*coshpx, q5OS N P-l(h0h)-4sinhpx (p -+ co), (5.7a)b) 

we find that $(x, p)  is exponentially bounded as p -+ 00 if x > 0 and is O( 1/p) as 
p-+ooifx=O. 

We proceed on the assumption that k, has a small, negative imaginary part, 
say -ik+ and choose the branch cuts for p along 9 p  = 0, such that 9,u > 0 in 
the cut plane (the branch cuts, as sketched in figure 1, are those sections of the 
equilateral hyperbola through p = k k, that lie in 19/31 < 19kmI). The poles of 
$ ( x , p )  then lie just below/above the real axis in ]9k , l  < +9Q? < 19kol. By 
deforming the pa6h of integration for (5 .3b )  from the real axis into 9/3: 0 for 
y $ 0  and invoking Cauchy’s residue theorem and the aforementioned bounding 
of S(z,p) as p -f co on the assumption that x and/or Iy1 > 0,  we obtain 

n 

m = l  
G(x,y) = p,q5(x,,8m)e-iamlgl+Q c( x )YL ( 5 4  

P m  = Re~@o/xo}j=jm = [{dlO”a,(~~+Xm~lOC)}j=jml-lho (m 2 1)) (5.9) 
where 

27TGc(x, Y) = /ciihO/XO(B)} w, P )  e -ml  ap, (5.10) 

C traverses the branch cut from p = k, in a clockwise direction, and q5(x, p)  is the 
analytical continuation of the right-hand side of (4.3) along C. 

We restrict the further reduction of G to the neighbourhood kolrl -=g 1, which 
suffices for most applications (see $8 below) and permits both q5(z,p) = q5OC(x) 

and exp (-iplyl) to be approximated by unity except for large p. Invoking 
these approximations in (5.8) and (5.10)) remarking that xo(p)  on the left-hand 
(or top) side of C is the complex conjugate of x0(p )  on the right-hand (or bottom) 
side, letting ki J. 0,introducing the change of variable p = - iv and the approxima- 
tion [which follows from ( 5 . 7 ~ )  for Ip( 9 k, and lcox < 11 $(x, p) = cos (vx) along 
( - im, 0 ) ,  and substituting the resulting approximation to G ,  into (5.8), we obtain 

G(x ,  Y) = (P + i4x9 Y)> (1 + O(kOY)), (5.11) 

where (5 .12a)b )  
n 

m=O 
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Pi 

3. 

FIGURE 1. Location of poles ( x ) and branch cuts in complex$ plane (for two-step model of 
0 6) on the assumption that k ,  has a small, negative imaginary part - iki .  The cut from the 
branch point a t  + k ,  tendsto the real-axis segment (0, k , )  plus the negative imaginary axis 
( -iw, 0) as ki J. 0; similarly, the cut from - k ,  tends to ( - k,, 0) plus (0, im). C, the path of 
integration for Gc(z, y), as given by (5.10), must be indented overlunder the branch point (0 )  
and poles ( x ) on the positivelnegative real axis in the limit ki J 0 and may be deformed into 
a contour around the lowerlupper cut for y 0 after allowing for the contributions of the 
poles. The sketch shows C for y > 0. 

pm is given by (5.9) for m > 1, 

The parameter p is a measure of the rate at which energy is radiated into x > 0 
(see 0 8 below). The distributions of the radiated energy among the trapped modes 
(which are radiated along the coast) and the continuous spectrum of the abyss are 
proportional to p m  (m = 1,2, . . ., n) and po, respectively. The function h is a mea- 
sure of the non-radiated energy in the neighbourhood of the source (this non- 
radiated energy would be infinite for a concentrated source with a finite volume 
flux, but is finite for any integrable velocity distribution over a finite interval). 

It follows from potential theory that iG, and hence -A, is singular like 
(l/n-) log R as .R+ 0.  Referring to the limiting form of (5.2) as kR 4 0, we surmise 

(5.15) that 

where In y is Euler’s constant and V is a constant - or, more precisely, a functional 
of h‘/kh - that vanishes for h = constant. We give derivations for specific examples 

nA(x, y) = -In (+ykoR) i- V +  O(ko R )  (ko B+ 0) ,  
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in the following sections and find that %? is typically small if h does not vary rapidly 
over the coastal terminus of the shelf. Moreover, if h(x) does vary rapidly over 
a terminal section that is small compared with l/lco, we may replace that section 
by a discontinuity in h and invoke the continuity of x across such a discontinuity 
(see last sentence in penultimate paragraph of 92) to obtain 

G(x,  y) = (hi$$) (p + w+, (5.16) 

where h$ are the depths at  x = O,, and p and h are based on h$. 

6. Two-step model 

in 0 < x < 1, terminating in vertical cliffs at x = 0 and x = I ,  such that 
The simplest model of a continental shelf is a plateau of constant depth h, 

(6.1a) 

(6.lb) 

We characterize this model by the dimensionless parameters 

and 

where a, is defined as in (4.6). 
The basic solutions on the shelf are 

$OC(x) = cosax and 5hos(x) = (ah,)-lsinax (0 < x < I), (6.3a,b) 

where a = (k:-p2)+. (6.4) 
Invoking (5.6), we obtain 

x P ( p )  = ahstanal (6.5a) 

and xo(/3) = ah,(p- AatanaZ)/(Ra+ptanal). (6.5b) 

Expressing /3 and p as functions of a,  

/3 = (kz-a2)3 and p = (a: -a2)*, (6.6a, b )  

we rewrite the trapped-mode equation (4.5) in the form (see figure 2) 

(a: -a:)+ = Ramtanaml (0 < a, < a2 < ... a, < a*), (6.7a) 

where n = 1 -t [a* Z/n] (6.7b) 

([a* //TI = integral part of a,l/n). Similarly, we rewrite (4.8) and (4.10) in the 
forms 

and A(/?)  = (a2-a:)+{(a2-a$) cos2aZ+ A2a2sin2aZ}-+ (6.9a) 

t A(0) = (cos2k,Z+ Asin2kSZ)-B (p240). (6.9b) 

We note that A(/?)  = 1 for /? = k,(l + A)-*. A(/?) and 6 are plotted in figures 3 
and 4 for R = Q (this value being appropriate for a two-step approximation to 
the shelf off California, e.g. h, = 600 m and h, = 3600m). Increasing k,Z by an 
integral multiple of 7r alters these results only slightly. 

tana = Aa(a2-a$)-Ptanab (a* < oc < IC,) (6.8) 
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a1 
FIGURE 2. Graphical solution of (6.7) for h = 6 and 

u,Z = 2-4n(~c, 2 = 2 . 1 9 ~ ) .  

1 1 I I 
1 1 I 4 0 a 

P l k  
FIGURE 3. Amplification factor for the two-ste model (fi = i), as given by (6.9). ---, 

of k, and k, (4 = + corresponds to h&, = 0.066). 
WKB approximation (7 .3b) ,  with h;jh = *(hi P +h;8), such that k,is the arithmeticmean 
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1 I 

FIGURE 4. Phase parameter for the two-step model (h  = +), as given by (6.8) 
The shaded region is excluded by the discontinuity in 6 at k,l = &T. 

Substibuting (6.5b) into (5.9) and (5.12)-(5.14), we obtain 

pm = [ (~mZ){ l+(a , /~ )L)2 (aZ) -1s~na~cosa~)B~B~]-1  (m 2 l) ,  (6.10) 

(6.11) 

The /3, and pm may be approximated in various ways; however, their numerical 
evaluation is straightforward. Numerical values of pm and x p m  for A = 6 are 

plotted in figures 5(a) and (b ) .  The plots for other R < 1 are similar. The total 
p for A = 0.1, 0-2 and 0.4 is plotted in figure 6. The limiting value of p as either 
A 1' 1 or k,1.&0 is Q. 

m 

The approximations 

a m  t (m - Q) r/l, Pm t I-l(kE - a;)-' ( A  4 0) (6.13) 

are adequate for m < n, but not typically for m = n. They also are asymptotic- 
ally valid for k, 1 -+ 00 and yield 
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P m  

0 +n n in 2 n  :n 

a *1 

101  1 I I I 

73 

1 

%l 
FIGURE 5. (a) The trapped-mode oontributions to the dimensionless radiation resistance for 
the two-step model (b  = Q). ( b )  The relative contributions of the trapped modes ( I  4 m < n) 
and the radiated modes (m = 0) to the radiation resistance for the two-step model ( A  = 8 ) .  

The corresponding approximation to po, as obtained by averaging the rapidly 
oscillating integrand in (6.11) over in intervals of al, is 

(6.15) Po N :Ikm (ki-P2)-hdP = -sin-lA) (a,l-+ m). 

Adding (6.14) and (6.15), weobtain the asymptoticlimitp N +. Thislimit, which 
is analogous to that of geometrical optics for the scattering cross-section of an 

1 
n o  n 
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1.0 

0.8 

0.6 

P 

0.4 

0.2 

t 1 I I 1 

FIGURE 6. The dimensionless radiation resistance for the two-step model. 
The limiting result for an ocean of constant depth is p = 4. 

obstacle, is approached in an oscillatory manner (see figure 6), with the amplitude 
of the oscillations increasing with decreasing R ;  however, it provides a rough 
approximation ( & 20 %) for a, I > 7~ and R 2 0.2. 

It remains to evaluate A. Introducing the change of variable t = vlyl in 
(6.12) and averaging the rapidly oscillating integrand over 6.n intervals of 
(Illy[) (k:y2+t2)* in the limit IyI/I-+ 0 ,  we obtain 

T A  -1; (k~y2+t2)--ge-tcos(tx/~)dt ( ly l /~-+o)  ( 6 . 1 6 ~ )  

(2 = ~ S { l Y l  +;4, (6.16b) = 9 joa e-2 1 ,j 7 

= - &&?{E,-,(z) + Y,(z)} 

= -In(+ylc,r)+O(k,r) (ksr$O), 

( 6 . 1 6 ~ )  

(6.16d) 

where ( 6 . 1 6 ~ )  follows from (6.16b) through the integral representation of the 
Anger-Weberfunction E, (Watson 1945, $10.1 and $10-13), Y,is a Bessel function, 
and Iny is Euler's constant. The approximation (6.16d) is equivalent to (5.15) 
with h, = h, and %' = 0. 
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7. Gradually sloping shelf 
We now consider a gradually sloping shelf, 0 < x < I, over which h(x) increases 

monotonically from h, to h,, such that a2(s,p) > 0 3 p 2  < kt and that a2(x,p) 
has one and only one zero, say x,, if k2, < p2 < h$. We assume 

l d l n h  dln(l/k) 
2 ax ax e I4 s = s(x) -- = 

at all points bounded away from x = x,. Typical values of s for the Pacific coast are 
smaller than 0.1 km-l (e.g. s = 0.05km-l for a smoothed fit to  the shelf in the 
first 7 0  km off Crescent City, over which h increases from 100 m to  3000 m); 
accordingly, s < la1 is likely to be satisfied over most of a typical continental 
shelf at tsunami wavelengths, although it may be violated at either the coastal 
or the abyssal terminus or both. 

The asymptotic (Liouville) approximations 

@”’(x) N ( K , / K ) ~ C O S  adz , qP(s) N (K,K)-*sin ( J , ~ d x )  (7 .2a ,b )  (so” ) 
hold for -m < F2 < k: and, on substitution into (4 .8)  and (4.10), yield 

(7 .3a ,  b )  

The result (7 .3b)  is plotted in figure 3:for h&, = 0.066, which corresponds to 
A = 6 for the two-step model, equation (6 .9) ,  if h, is defined such that k, is the 
arithmetic mean of k, and k,. 

The WKB approximation (Jeffreys & Jeffreys 1950, 517.131) 

satisfies the finiteness condition (4.1 b)  and is valid for p2 > e. By requiring it 
to satisfy (4.1 a) ,  we obtain the trapped-mode eigenvalue equation 

e,(p) -/;adz = SBX’(k2-/32)4(ks)-’dk = (m-$)n  (/3= +&), (7.5a) 

where m = 1 ,2 ,  ..., n, n = [t +7~-~8,(k,)]. (7 .5b)  

The input impedance implied by (7.2) and (7.5) is 

~ K O  cp2 k 3 ,  (7 .6a )  
x o m  KoCOt(&+Qn) (k2, < P2 < (7 .6b)  Lo, (P2 ’ ICE). ( 7 . 6 ~ )  

[The apparent branch points at  /3 = rl: k,, rather than 5 k,, are artifacts of the 
asymptotic approximation and do not affect the deformation of the Green’s- 
function contour depicted in figure 1 ,  which is antecedent to the asymptotic 
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approximation.] Substituting ( 7 . 6 ~ )  into (5.12)-(5.14) and (7 .6b )  into (5 .9) ,  we 
obtain (cf. equation (6.15)) 

n-po = sin-1 (k,/k,) = sin-1 (h,/h,)*, (7 .7 )  
Pm = (k~-~~)-~{-S~(Prn)}-', (7.8) 

and (5.15) with %? = 0. The asymptotic spacing of the /Irn is, from (7.5), n-/0&3,); 
combining this result with (7.8), we obtain (cf. equation (6.14)) 

n 

m = l  
c Pm N sk; pm S'(prn) d/3 = in- - sin-l( km/k,) ( k ,  l + a), (7 .9)  

which, in conjunction with (7 .7) ,  implies the asymptotic limit p N 4, as in $6. 

F ( p ) .  Rewriting (2 .9 )  in the form 
We obtain a first approximation to %? by improving the approximation to 

1/x = ( iK)- l{ l  Sh(l/X),}+ (2x > 0 )  (7.10) 
and proceeding by iteration from the first approximation 

we obtain 
X ( & P )  - ilc (P2 < k%), (7.11) 

P(p)  N a,l[l - ( s /o l )" i -~(k / tc )"~(k/ tc )4  

+ @'/a2) {i - + O(s/014)}i,=0 (P2 < k%), (7.12) 

where s(x)  is given by (7.1), and 

s' = ds/dx = ds2/d In h. (7.13) 

Substituting (7.12) into (5.13), we find that the leading term may be evaluated 
as in (6 .13) ,  with h, replaced by h,, whilst the remaining terms may be evaluated 
from 

e+udv (n - l)! 2n-1 
{J.+O(ky)} (n 2 1). (7.14) s 0 (k2fv2)s* 1.3.5 ...( 2%- 1)k2" 

The end result is (5.15) with 

%? = + *(s'/k2) + O{(s/k)*}],=,+. (7.15) 

The asymptotic approximation (7.12) is not uniformly valid in the neighbour- 
hood of p = k, and therefore is not generally suitable for the calculation of 
po. However, h, < h, in actual applications, and we may obtain an approxi- 
mation top, that is consistent with (5.15), but with an additional error factor of 
1 +O(h,/h,), simply by approximating tc by k, in (7.12), the substitution of 
which into (5 .12b)  then yields 

(7.16 a )  
(7.16 b) 

Po = (k,/n-) P(0)  (1 + O(ho/hm)) - ?r-l(h,/h,)+ (1 ++(s/k)2+ i(8'/k2)]z=o*. 

Parabolic shelf 
We apply the preceding results to a parabolic profile of latus rectum b with vertex 
a t  I(: = - d  and h = 0 (such that bh, = d 2 ) :  

h ( ~ )  = (X+d)'/b (0 < x < I). (7.17) 



Wave propagation across the continental shelf 

0.6 I I I I 

0.5 

0.2 

0.1 

c I 1 I I 
0 1 2 3 4 

4/77 

77 

FIGURE 7.  The dimensionless radiation resistance for the gradually sloping, parabolic 
shelf, as calculated from the WKB approximation in 7. 

Invoking (2.3) and (7.1), weobtain 
le/A = s = (z+d)-l, R = cT(b/g)k (7.18a,b) 

Substituting (7.17) and (7.18) into (7.5) and (7.8), we obtain the asymptotic 

p, = EGO sech v,, (7.19 a)  
B0,(/3,) = &(urn - tanh v,) = (m - 2) T ,  (7.19b) 

pm = R-l cosech v, Goth v,, (7.19 c )  

and n = [$ + (+) (u, - tanh urn)], (7.19d) 
where V, = c0sh-l (leo/k,) = c0sh-l {l + (Z/d)) (7.20 a )  
and h,/h, = sech2v,. (7.20b) 
Substituting (7.18) into (7.15), we obtain 

v = - ~ 1 & - - 2 + 0 ( ~ 4 ) .  (7.21) 
The radiation resistance obtained by substituting (7.7) and (7.19~) into (5.12~~) 

is plotted in figure 7 for ho/h, = 4 and.&. The discontinuities inp, which represent 
the entry of additional trapped modes, are a consequence of the non-uniform 
validity of the WKB approximation in the neighbourhood of /3 = k,; cf. figure 6, 
where p changes sharply but continuously. [The parabolic profile permits an 
exact solution of (2.5) in terms of modified Bessel functions of order (i - P)). 
Limited calculations with this solution yielded numerical results for p that are 
qualitatively similar to those of figure 6.1 

A n  extension of the results of this section to a gradually sloping shelf that ter- 
minates at a vertical drop from h, to h, at x = 1 reveals that the primary effect of 
such a discontinuity is to increase, and render oscillatory with k,, the contribution 
of the continuous spectrum to the radiation resistance (cf. po  in figure 5(b) ) ,  

solution (as R f c o )  for the trapped-mode parameters in the parametric form 
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although it also has lesser effects on the trapped modes. The net effect on p is, 
in any event, small for sufficiently large values of k,Z, say k , l ~  2n,  if ho/h, 4 1 .  
The effect on h also is small, both because h is dominated by the logarithmic term 
in (5.15) and because it is derived from integration over the entire imaginary axis 
of the p plane, over most of which the effects of slope are small, and it appears that 
(7.15) provides an adequate estimate of %? for an appropriately smoothedprofile. 
The effects of a locally steep slope at the coastal terminus of the shelf, over an 
x interval that is small compared with l/k, may be incorporated simply by choos- 
ing h, as the depth at the seaward end of this interval (see last paragraph in $5). 

8. Resonant response of harbours 
Following an earlier analysis (Miles 1971, hereinafter designated by I) for a 

constant-depth model, we consider the effect of a continental shelf on the resonant 
response of a harbour to an incoming tsunami. This response is essentially re- 
stricted to the Helmholtz mode if, as is almost always true, the dimensions of 
both the harbour and its entry channel are small compared with the local wave- 
length ( I l k  based on the harbour depth) of the tsunami. Our notation and con- 
ventions follow I except as follows: the signs of x and u are reversed; j and w 
in I appear here as i and IT; G denotes the Green’s function for the harbour in I, 
wherein the Green’s function for the half-space is given by the right-hand side 
of (5.2) above. 

Let Q + 5, be the total disturbance in x > 0, where c, is the disturbance that 
would exist if there were no flow across x = 0 (aco/8x = 0 at x = 0 ) ,  and 6 is the 
scattered wave that is induced by the flow through the harbour mouth, M ,  in 
x = 0. It follows from ( 2 . 2 ~ )  and the definition of the Green’s function in $ 5 that 

r 

where u is the x component of u. The total flow into M is 

where I is the current flowing into the equivalent circuit of I in response to the 
input voltage (see I, $ 3  for details) 

6 = (C0)M- (8.3) 
The corresponding radiation impedance, which must be placed in series with the 
harbour impedance (including that of its entry channel, if any) to obtain the 
complete equivalent circuit, is 

2, = RM+iXM = &u*hdy, (8.4) 
M 

where u* is the complex conjugate of u. Substituting (8.1) into (8.4) and intro- 
ducing the normalized velocity distribution f(y), such that 

(8.5a, b)  
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we obtain (cf. I, equation (3.4)) 

Z M  = (WdJ J G(O,y-r)f(rl)f*(y)dycEy, (8.6) 
M M  

where h; is the inner coastal depth (x = 0-) and may differ from hof, the outer 
coastal depth, in consequence of the approximation of the terminal section of 
the continental shelf by a discontinuity in depth. 

The complete formulation of the scattering problem requires the construction 
of an integral equation for f(y) through the matching of the exterior solution 
provided by (8.1) to an appropriate solution in the harbour (x < 0).  It suffices 
for our purposes, however, to construct (as in I) a variational approximation to 
2, by invoking the potential-flow approximation-j- 

where a, the width of M ,  is, by hypothesis, small compared with l/k,,, and the 
normalization corresponds to (8 .5b ) .  Substituting (5.16) and (8.7) into (8.G),  we 
obtain 

where lcof is the wavenumber based on hof. The corresponding result for a 
constant-depth ocean, as given by equations (3.7) and (3.9) of I ,  is 

f(Y) = (1/~){(Q4”Yy”}-t (IYl < *a), (8.7) 

Z M  = (a/gh$)[p+ (i/.)(-ln(gyk,+a)+%‘}l, (8.8) 

The appearance of hO+ in (8.8) v i s - h i s  h in (8.9) follows directly from conserva- 
tion of mass flux and free-surface displacement across M and does not depend on 
the variation of h(x)  over the shelf; in particular, setting p = Q and ‘3 = 0 in (8.8) 
extends the model of I to an ocean of constant depth hof that may differ from the 
depth of the harbour. The appearances of p in place of Q and of Inkt  - %‘ in place 
of In k reflects the change in depth, from h i  to it,, over the shelf. The principal 
effects of these differences are to raise the resonant frequency, the inverse damp- 
ing factor &, and the power-spectrum amplification factor 9’ (ratio of the mean- 
square elevation in the harbour to the mean-square elevation that would exist 
at the coastline if the tsunami were specularly reflected). The increase in the 
resonant frequency is not likely to exceed 50 yo for a harbour without an entry 
channel and is likely to be small for a harbour with a significant entry channel. 
The predicted increases in Q and 9 may be large; however, dissipation, which 
reduces both Q and 9, would then be relatively more important. The variation 
ofp with k might be significant (within the accuracy justified by the basic model) 
if the shelf were so short that the f i s t  trapped mode were below resonance for the 
tsunami (so that p is on the steeply rising portion of the first peak in the radiation- 
resistance curve, see figures 5 ( b )  and 7); otherwise the rough approximation 
p = 4 is likely to be adequate. 
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